态密度
发布时间:2023年03月19日 作者:编辑
态密度是固体物理中的重要概念,即能量介于E ~E+△E之间的量子态数目△Z与能量差△E之比,即单位频率间隔之内的模数。N-E关系反映出固体中电子能态的结构,固体中的性质如电子比热,顺磁磁化率等与之关系密切。在技术上,可利用X射线发射光谱方法测定态密度。
目录
1.简介 2.相关公式简介
对于三维固体材料而言,在自由电子模型下,N(E)=4πVEl/2(2m)3/2/h3,式中V为晶体体积,h为普朗克常数,m为电子质量。
相关公式
(绝声还烧1)对于晶体中的准自由电子,具有有效质量m*,导带底的等能面是球形等能面,导带底附近的能态密度函数为Nc(E)=(1/2π2) *(2m*/ħ2)^(3/2)* (E-Ec) 弱及理也厚获卷气那洲.^(1/2) ∝ (E-Ec)1/2 。
(2)对于实际Si和Ge的导带底,因是旋转椭球等能面 (s个),并且存在有纵向有效质量ml*和横向有效质量mt*, 毛.则根据
E(k) = Ec + (ħ2/2) { [(k12+k22) / mt*] + [k32/ml*] } ,同样可求得以上形式的Nc(E),但其中的有效质量m*应该代之为所谓导带底电子的状态问乡突季结问升密度有效质量 mdn* = (s2ml mt2)1/3。对于价带顶附近空穴的能态密度函数,类似地可求得为 Nv(E) = (1/2π2) (2m*/ ħ2)3/2 (Ev-E)1/2 ∝ (Ev-E)1/2 ,其中价带顶空穴的状态密度有效质量阳曾为 mdp* = [ (m*)l3/2 + (m*)h3/2 ]2/3,(m*)l和( 露日乡.m*)h分别是轻儿胜色密空穴和重空穴的有效质量。对于Si:s=6, mdn=1.08mo;mdp=0.59mo 。对于Ge:s=4, mdv=0.56mo;mdp=0.37mo。总之,对于三维自由电子,能态密度函数与能量的平方根成正比。但是,对于二维自由电子,能态密度函数将与能量无关。