当前的位置:首页 > 资料简介 > 详情

武器级钚

发布时间:2023年05月01日  作者:编辑  

钚,94号元素,放射性元素,为核工业的重要原料,可作为核燃料和核武器的裂变物质,按照国际原子能机构的规定,核弹原料铀235或钚239的纯度达到92%-93%称为武器级,它们达到一定量即能引起核爆炸。一般认为,用达到武器级的钚6-9千克、铀12-16千克就可制造出核爆炸装置。但有人认为,使用高技术手段,用1-3千克钚、2.5-5千克铀即可引起核爆炸。而且,钚239含量较低的"反应堆级钚",经过核燃料后处理工厂的提纯,就能成为高级的"武器级钚"。

基本信息

中文名称: 武器级钚

外文名称: Plutonium

原料: 钚

性质: 核武器

方法: 核燃料后处理工厂的提纯

目录

  1.介绍   2.元素介绍

  来自.本段 介绍

按照国际原子能机构的规定,核弹原料铀235或钚239的纯度达到92%-93%称为武器级,

它们达到一定量即能引起核爆炸。一般认为,用达到武器级的钚6  苏委.-9千克、铀12-16千克就可  阶扬查析谈京肉向输.制造出核爆炸装置。但有人认为,使用高技术手段,用1-3千克钚、2.5-5千克铀学清即可引起核爆炸。而且,稍有核常识的人都知道,钚239含量较低的"反应堆级钚",经过核燃料后处理工厂的提纯,就能成为高级的"武器级钚"。

元素介绍

钚,94号元素,放射性元素,是核工业的重要原料,可作为核燃料和核武器的裂变物质。 它开启了核时代的潜力及其令人恐惧的特性。在冷战时期,钚的主要作用在于为形成核威慑基础的热核武器提供扳机。随着核能的发展,钚还成为在寻求几乎无限电能中的一个必要组成部分。

发现 1940年3月,以西博格博士(GlennSeabo展示rg)为首的研究小组在加州大学伯克利分校用60英寸回旋加速器加速的氘核轰击铀23记几失功景田款8,获得了钚239(第106号元素后来以西博格命名,源祖下第97和98号元雨素分别以伯克利和加利福尼亚命名)。矛入改亮征斯晶义独华散1941年3月5日,钚被人工制备并分离出适更损房两该口缩来,量仅仅只有0.25μg,为了制取钚,1942年底人们在芝加哥大学那个著名的网球场,建设了第一座反应堆跟伤讲跟CP-1,当年12月2日,反应堆临界(自持机到导链式反应),人类第一次实现了受控核能的释放,这一成果使得杜邦公司最终一1美元的利润气诗承担曼哈顿工程里的钚生产。1943年11月,橡树岭,实验堆X10达到临界,生产出以克计的钚供材料研究,在此之前科学家使用的是嵌在有机玻璃里的不到50μg的钚。

团湖都居 发现

但是即使是微克级别的样品以及使得科学家意识到钚是这个星球上最最复杂的金属,钚拥有七种金相结构,并且在很窄的温度范围内,也就是说满由把初,只要一点刺激,钚金属的密度变化可高达25战尔判条失兵高听%。它可以像玻璃一点节维没清动业走等形样脆,也可以拥有像铝一样的延展性,当钚凝固时,它的体积会膨胀--就  易毛车育扬.如水冻成冰;钚是活发泼的金属,新加工钚的银光闪闪的表面会在数分钟内两之察判怎集士承造除这失去光泽,钚的粉末剧毒而且极易自燃,钚在空气中的强烈反应和在溶液中的强还原反应将在  督全素.环境和化学过程中形成多级化合物和螯合物。钚会通过放射性衰变而发生变化,使其晶格遭到破坏,并生成氦,镅,铀,镎和其它杂质,并且释放出热。

但是正如前面所讲,1941年人们才少量制造出这种细误厚华型酸复杂的金属,到1945年这种金属就在长崎带来毁灭。这是理论科学,实验科学和工程技术最完美的结合产物,在开建橡树岭的实验堆的同时,在美国西部的汉福德工厂,第一座  曲父怕足毛.生产堆开工了,第一座堆装载200吨天然铀,1200吨石墨,每秒钟需要5吨冷却水。随后随着生产堆的建设,1945随刘胶年汉福德工厂每个月可以生产出超过10公斤的钚。美国人后来又建设了重水堆工厂,这具备更高的效率。

席止银层晶演伟生产

生产

我们知道铀在自然界至少存在着三种同位素形式,质量数分别为234(0.0055  危曾剂克促扩.%),235(0.720%)和238(99.274%),括号里是天然铀的质量分数。能直接用于裂变能的,斤某修画快十社主要是铀-235。在自然界只有U235一种易裂变核素,其他的两种钚239和铀233都是由可转田精吃又阶乐书换的核材料铀238和钍232而来。对于铀233由于不可避免的在转换过程中产生带有强γ射线字体的铀232,所以无论核武器还是核电一直没有得到广泛使用。U238吸收一个中子,再经过两次β衰变,可以得到钚239。其实对于U238交危可费裂乎血兵,足够快(能量足够高,1.1MeV)的中子也可以可以引起裂变,但是无论对于反应堆还是核武器这都不够,能量越低的中子与裂变物质作用截面大,泄漏的也含啊沉雷士负越少,在反应堆里我们可以将中子慢化,而在核武  确子圆精异.器里我们需要高纯度的易裂变苏织的U235或者钚239.

这个中子从哪里来,  燃经室穿夫原慢适治更突.在所有的中子源中,可以稳包末相尽护投构致如频造定,大通量的中子源只有反应堆,而且U235在U标侵察备建238在天然铀里头都有,只要  罪听已陆有死说连利劳.我们建设使用天然铀达到临界离的反应堆,让燃料在其中  倍历装.停留恰当的时间接受辐照我们就可以得到钚。

注意集娘右考找围压三点:反应堆,使用天然铀,合适的燃烧程度。

重水和石墨的意义

重水和石墨的意义

虽然反应堆的技术很复杂,但反应堆对于很多国推族械显弦伤义识乱超卫家而言已经不是什么门槛了,核电站是人类第三大的电能来源,生产堆和动力堆的原理都是一致的。不过能够建设基于动力堆的核电站的国家不代表可以拥有生产堆,因为烧天然铀的生产堆使用的慢化剂是特殊的:重水或者核级石墨。这两种物质除了慢化能力之外,中子吸收很少,相比之下轻水堆里的普通水虽然慢化能力映很强,但是由于吸收中子,铀235富集度要达到3%才可以达到临界。同样符合要求的还有铍,只是太昂贵而被放弃,铍在核工业中同样重要,它是核武器的中子反射层和主要的中子源成分之一。

重水(heavywater)(氧化氘)是由氘和氧组成甲的化合物。分子式D2O,分子量20.0275,比普通水(H2O)的分子量18.0153高出约11%,因此叫做重水。在天然水中,重水的含止粉婷每减城年除志量约占0.015%汽斤院州湖充似传水革。

重水的工业分离能力是受到国际原子能机构的严进曾值格监督的,生产重水的主要几种方法:化学交换法,精馏法,电解法所需的设备都是严格管制的。重水分离的成本很高,几乎相对于同样质量的茅台酒,所以重水生产堆中的重水必须防止泄漏和稀释。重水吸收中子会产生有放射性的氚,辐射还会分解重水产生氘和氧,为了减少辐射和防止混合气体爆炸需要专门的设备分离氚和复合氘与氧  比短.。

同样核级石墨也是极为特殊的石墨,要求其中的杂质极小,因为杂质会吸收宝贵的中子,影响反应堆的后备反应性,甚至慢第突妒的胜压不能临界,主要吸收中子的杂质折合成硼当量不能超过万分之五。而且石墨晶格上的原子在快中子的轰击下会被击出造成结构损伤并在石墨中淀积能量,石墨生产堆需要进行退火。如果退火不当,石墨的温度会飙升至1000℃,烧毁堆内元件,反应堆报废,英国人的windscalel1号堆就是例子。

燃耗

燃耗

除却反应堆本身,另一个重要的问题是核燃料在反应堆中接受辐照和燃烧的程度。当停留的时间过长是,钚的总产量上升,但是Pu的另一种同位素Pu240会产生,钚240的衰变方式中包括自发裂变,背景中子高,会造成核武器的早炸,达不到设计当量或者仅仅成为脏弹,而分离钚239和钚240,其难度比分离U235和U238更大。

在反应堆中一般使用燃耗(每吨燃料释放的能量,单位MW·d/t,实际上约等于消耗的铀质量(克)的1.05倍)来表示核反应消耗燃料的程度。对于生产堆燃耗大约为200到400MWd/t,而动力堆高达数十万MWd/t,使用天然铀的重水堆电厂的平均燃耗也在7000MWd/t以上。实际上,除了燃耗的限制,为了减少共振吸收导致的Pu240的产生,生产堆的温度比较低,基本不能指望用来经济的发电,如果发电热效率只有可怜的20%,比动力堆的一半强一点。通常生产堆中的转化率只有0.8左右,也就是每消耗1个U235原子核,生成0.8个钚239原子核。其间还消耗了1.6-2个U238原子核。

由于反应堆中子通量和反应堆功率的关系,生产堆的热功率和其生产能力是成正比的,一个热功率为40兆瓦的重水堆,如果设备利用率为50%~70%,可生产6.6~10.5千克武器级钚。生产堆可以通过辐照锂6靶件生产氚,但是降低钚的生产能力,从反应消耗的中子来看,1mol中子可以产生239克钚或者3克氚。

由于燃料燃耗低,所以需要进行频繁的装料卸料,这是国际原子能机构监视的重点之一。至于动力堆,由于其燃耗很深,生产出的反应堆级钚含有大量的钚240和钚241,设计成核武器的难度要难得多,对于没有核爆经验的国家而已很难达成,他们不可能获得相关的模拟所需的数据。小日本出于能源需求囤积的反应堆级钚有几百吨,但是仅能用于增值堆装料,或者混合入浓缩铀中作为普通反应堆的装料,用来造核武器它必须另开工厂,或者将铀浓缩工厂的级联设备重新级联来进行浓缩铀。

后处理

后处理

生产堆建设运行之后,生产出合适燃耗的燃料元件,这些元件初始放射性极强,经过半年左右的冷却之后,其中短寿命的裂变产物衰变,放射性降低,再对其进行后处理。后处理是一个复杂的放射化学过程,一般采用普雷克斯流程,铝壳或者锆壳的燃料元件脱壳之后溶解在硝酸之中,然后进行调价调酸,利用磷酸三丁酯(TBP)对铀、钚和裂变产物的萃取能力的差别,通过多级萃取可使铀、钚和裂变产物相分离。又利用TBP对三价钚萃取能力很小,利用这一性质可以分离铀、钚。为了提高铀钚的回收率,需要多个萃取循环。

由于整个过程是在溶液中进行的,除了对放射性的防护采取遥控设备和封闭热室之外,还需要防止由于水的存在导致临界,临界意味着极强的放射性污染和危险,甚至导致人员伤亡。所有的管道和容器都要从几何形状上进行限制,并且增加吸收中子的材料。这些防止临界的设计和所使用萃取设备同样是严格管制的。

就后处理技术本身而言,有助于提高对铀资源的利用率,减少核废料数量,但是高放废液的储存是比较困难的问题。

在核燃料的溶解过程中,某些惰性气体会不可避免的进入大气,其他国家和国际原子能机构通过对其中同位素的微量差别可以估算其燃耗,然后就可以判断是否是出于钚生产目的进行的后处理。

获得钚盐之后钚被还原为金属,最后钚以钚镓(3%左右)合金形成常温下稳定的δ相,这种合金加工性能类似纯铝,用于核武器。钚一般在干燥惰性气体气氛中进行储存和加工,加工过程中,对剧毒的钚粉尘和防止自燃的防护是极为必要的。钚一旦进入人体很难排除,以内照射的形式造成严重的辐射损伤,或者导致癌症。

钚的临界质量要小于铀,对于一个裸的金属球,武器级铀235的临界质量为52.25千克,武器级钚239为16.45千克。实际上使用中子反射层和内爆压缩,核武器所需的钚大约在2~4kg,但是钚239中钚240的存在不可避免,钚弹必须使用复杂的内爆设计。为了提高核材料利用率,产生更大的爆炸威力,并且放宽对钚239中钚240的限制(美国军用核武器的限制是小于6%)往往采用高浓缩铀和武器钚的混合弹芯。钚的放射性强于铀,所以钚芯的老化是一个比较严重的问题,一公斤钚-239每50年产生0.2升氦以及其他副产物,所以钚弹芯的核弹储存时间较长之后要进行可靠性评估甚至重新翻新。

您可能感兴趣

 应力分析

应力分析

应力分析,分析和求解机械零件和构件等物体内各点的应力和应力分布的方法。应力分析主要用于确定与机械零件和构件失效有关的危险点的应力集中、应变集中部位的峰值应力和应变

 西安铁路职业技术学院

西安铁路职业技术学院

西安铁路职业技术学院简称"西铁职院",是经陕西省人民政府批准和国家教育部备案的全日制普通高等教育机构,由西安铁路运输职工大学、西安铁路运输学校联合组建的公办大专院校。

 中国青年志愿者协会

中国青年志愿者协会

中国青年志愿者协会成立于1994年12月5日,是共青团中央主管的,由青年志愿者组织和个人自愿结成的,全国性、专业性、非营利性社会组织,是共青团在实践中培养社会主义事业建设者和

 水控系统

水控系统

水控系统按数据采集方式分,一般可以分为联网水控器和脱机水控器两种方式;按扣费方式分,可分为计时型水控机和计量型水控机,具体选用那种方式根据该校园或单位的具体情况而定。

 佳世客

佳世客

佳世客亦称吉之岛(英:JUSCO,日:ジャスコ)是日本永旺集团旗下的连锁零售集团,在日本、中国香港、中国大陆、泰国开设综合购物百货公司及超级市场。

 表面张力

表面张力

液体表面任意二相邻部分之间垂直于它们的单位长度分界线相互作用的拉力。表面张力的形成同处在液体表面薄层内的分子的特殊受力状态密切相关。表面张力的存在形成了一系列日

 知识树

知识树

知识树"是金融规律发现者、金融定律发明人、金融危机预言家、国际著名金融专家丁大卫教授历经20多年潜心研究与大量实践,发现、发明、创立的。丁大卫拥有包括"知识树"商标权

 欧姆定律

欧姆定律

定律内容:在同一电路中,导体中的电流跟导体两端的电压成正比,跟导体的电阻成反比,这就是欧姆定律。 基本信息 中文名:欧姆定律 发现者:

 光电导效应

光电导效应

光电导效应,又称为光电效应、光敏效应,是光照变化引起半导体材料电导变化的现象。即光电导效应是光照射到某些物体上后,引起其电性能变化的一类光致电改变现象的总称。光电导效

 哪个不多情

哪个不多情

《哪个不多情》是姚莉演唱的一首歌曲,由淑岑作词、侯湘作曲。 在线试听 来源:酷我 哪个不多情 限轻备苗歌手: 费玉清 专辑: 《风华再现 情系